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Maximum-likelihood estimation of the entropy of an attractor
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In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed
that can be obtained directly from a time series. Also, the relative standard deviation of the entropy esti-
mate is derived; it is dependent on the entropy and on the number of samples used in the estimation.
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I. INTRODUCTION

Invariants of attractors, such as the correlation dimen-
sion and the Kolmogorov entropy, are useful quantitative
tools in the characterization of chaotic systems. During
the last decade, many practical examples of chaotic at-
tractors in physical and chemical systems have been
shown in the literature. Also, various methods have been
suggested, using the correlation integral, to calculate the
correlation dimension and the Kolmogorov entropy from
experimental data. When these invariants are used for
further applications, such as the classification, characteri-
zation, or modeling of the underlying chaotic phenome-
na, it is necessary to have a reliable measure of the accu-
racy with which the invariant was obtained. Of course,
in principle the level of uncertainty can be estimated by
repeating the random drawing of a subset of the points on
the attractor and the following calculation of the invari-
ant many times, and subsequently calculating the average
and the variance of the invariant. However, it would be
much more convenient to obtain an estimate of the un-
certainty from calculating the invariant only once. This
can be achieved by applying a maximum-likelihood ap-
proach in which the correlation integral is treated as a
probability distribution. Takens [1] has already derived a
maximum-likelihood estimator for the correlation dimen-
sion together with an estimate of its standard error. A
maximum-likelihood estimator for the Kolmogorov en-
tropy was derived by Olofsen, De Goede, and Heijungs
[2], which is strongly based on the method proposed by
Grassberger and Procaccia [3] of calculating the entropy
from the quotient of two correlation integrals at large
embeddings. In this paper, we propose a different
maximum-likelihood approach to the estimation of the
Kolmogorov entropy and its standard error. We believe
that this approach is simple and unambiguous, while the
calculation can be done quickly when an efficient algo-
rithm is used.

The method of determining the Kolmogorov entropy
of an attractor in a physical experiment consists of two
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parts. First the attractor should be reconstructed in the
state space whereafter the entropy can be estimated using
the maximum-likelihood approach. Here, we will assume
that the attractor has already been reconstructed using
Takens’s reconstruction technique [4] with specific
choices of the reconstruction parameters (viz., embedding
dimension and delay time). Of course, it may be possible
that the correlation integrals, from which the entropy is
estimated, are dependent on the choice of the reconstruc-
tion parameters. That means that also the calculated en-
tropy will depend on this choice. In principle, this can be
checked by repeating the estimation for various combina-
tions of the reconstruction parameters.

II. THE ENTROPY OF AN ATTRACTOR

The Kolmogorov entropy of an attractor can be con-
sidered as a measure for the rate of information loss
along the attractor or as a measure for the degree of
predictability of points along the attractor given an (arbi-
trary) initial point. In general, a positive, finite entropy is
considered as the conclusive proof that the time series
and its underlying dynamic phenomenon are chaotic. A
zero entropy represents a constant or a regular, cyclic
phenomenon that can be represented in the state space by
a fixed point, a periodic attractor, or a multiperiodic at-
tractor. An infinite entropy refers to a stochastic, non-
deterministic phenomenon.

Here we will apply the definitions of the order-2 Kol-
mogorov entropy as suggested by Takens [5] and by
Grassberger and Procaccia [3] (see also [6]). According
to these definitions, we will estimate the entropy from the
average time required for two orbits of the attractor,
which are initially very close together, to diverge. More
precisely, we calculate the entropy from the average of
time t, that is needed for two points on the attractor,
which are initially within a specified maximum distance
Iy, to separate until the distance between these points has
become larger than /;. In this way, the entropy can be
considered as an invariant, quantifying the rate of separa-
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tion of nearby points on the attractor. We define two
points to be initially nearby when these points are on
different orbits and within a distance that is less than the
specified maximum distance /.

According to Takens [5] and Grassberger and Procac-
cia [3], the separation of nearby points on different orbits
is assumed to be exponential, and the time interval ¢ re-
quired for two initially nearby points to separate by a dis-
tance larger than /, will be exponentially distributed ac-
cording to

Cltg)~e 0, (1)
where K is the Kolmogorov entropy. In most practical
cases, this assumption is justified, tests of which have
been given, for example, by Grassberger and Procaccia
7.

Generally, the points in an experimental time series are
measured at discrete, constant time intervals with a time
step 7, between two sampled data points that equals
1/f,, where f, is the sampling frequency. Consequently,
for practical purposes, C(t;) should be transformed into
a discrete distribution function that is defined as

Ch)y=e 7, @)

with b=1,2,3,. ...

This cumulative distribution function describes the ex-
ponential decrease as a function of b. This variable b
equals the number of sequential pairs of points on the at-
tractor, given an initial pair of independent points within
a distance [, in which the interpoint distance is for the
first time bigger than the specified maximum interpoint
distance /. In other words, b is obtained from the num-
ber of times that

IXito—1= X451l =1o 3)
with b =1,2,3, ..., provided that

X =Xl <l , 4)
while

1Xi+6 =X 45l > 10 - (5)

In this case, the points on the (reconstructed) attractor
are represented by their state vectors (using a delay time
of unity) that are described by

X=X 41 e s Xiam 1) (6)
and

Xj=(xj,xj+1,...,xj+m_1)T, (7)
where Xx;,...,X; ;15 Xj5---3X; 4, are the respec-

tive data points in the time series [4]. In principle, the
maximum distance [, can be based on any norm
definition, e.g., the Euclidean norm or the maximum
norm. However, when the maximum norm is used and
when the attractor is reconstructed straightforwardly
from the time series, then b is readily obtained by count-
ing the number of times that the absolute difference be-
tween sequential pairs of data points in the time series is

smaller than /,, given an initial pair of independent data
points (x;,x;), according to

lxi+m—1+b—l_xj+m—l+b—ll <l, for b=1,2,3,...,

and provided that
max|x; ;, —x; 45| 1o 9)
with0<k <m —1, while

Xt — 146 =X 4m—1461> 1o - (10)

In this way, using an efficient algorithm, b can be deter-
mined very quickly and directly from the time series.

The rate of the exponential decrease with b is thus
measured by the invariant entropy K. In principle, this
definition of the entropy is only valid in the limit case,
that means for small distances /;, and large embedding di-
mensions m, so that when

ly—>0Am— oo . (11)

Consequently, not only the parameters used in the recon-
struction of the attractor (viz., embedding dimension and
delay time) but also the choices of the parameters used in
the calculation of the correlation integral C(b) (viz.,
embedding dimension m and the length scale /;) may
affect the estimation of the Kolmogorov entropy. As also
mentioned in the Introduction, in principle, this can be
checked by repeating the estimation of the entropy for
various values of these (reconstruction) parameters.

III. MAXIMUM-LIKELIHOOD ESTIMATION
OF THE ENTROPY

For convenience, we now introduce k=K. So the
distribution function C(b) now reads as
Cb)=e X, (12)

The probability of finding a distance bigger than /, after
exactly b interpoint distances is

p(b)=C(b—1)—C(b)=e kb1 —_gkb (13)
From this, it is determined that
p(b)=(e*—1)e %, (14)

This probability density function is known as the
geometric probability density function (see, for example,
Ref. [8]); it has been correctly normalized as can be de-
duced from

3 pb)=(ef—1) S e ¥=1, (15)
b=1 b=1

using that
a+a*+a’+ - =—2— when |a|<1. (16)

l1—a

Using the probability density distribution of b, we will
now derive an expression for the entropy based on a
maximum-likelihood estimation. The probability of



128 SCHOUTEN, TAKENS, AND van den BLEEK 49

finding exactly the sample (b,,b,, . . ., b,), depending on
k, from a random drawing of M pairs of independent
points on the attractor, is

= (bl,bz,.,. by k)
M
—Hp (e*—1)Mexp(— 2 (17)

First, we take the logarithm of both sides; this results in
the so-called log-likelihood function L (k):

L(k)=In[p(b,,b,, ..., bM;k)]

=M In(e*—1) kzb (18)

i=1

Finding the maximum of this function means that we
want to find the value of k (or entropy K) that leads to
the largest probability of finding the sample

(by,by,...,bsy). So we want to find the maximum of
L (k), which follows from
oL (k) M <
= -3 b,=0. (19
ak 1—‘641( igl ! )

From this equation we can derive the maximum-
likelihood estimate of the entropy, K v :

) e

, 2D

which is the average value of the b’s in the sample
(by,by,...,by), with sample size M. We can easily
prove that this value of K is indeed leading to a max-
imum of L(k) by calculating the second derivative of
L(k)ink=kyy:

2 —k
OLk) ___Me —  — _Mp(E—1)<0. (2
ak? (1—e %)

Because this second derivative is always negative [the
average of b is always larger than / (so positive)], the
value of kyy is indeed leading to a maximum of L (k).
From the derivation of K given above, it follows that
the maximume-likelihood estimate of K is only a function
of the sample average of b. Using this result, the same
expression for the entropy estimate can be derived by cal-
culating the expectation value E (b) of b, using the proba-
bility density p (b), which leads to

e 1
E(b)= = - . (23)
ek—1 1—e %

When we use in Eq. (23) for £ (b) the sample average of
b, we obtain the same expression for k as was derived
with the maximum-likelihood method [Eq. (20)].

IV. STANDARD DEVIATION
OF THE ENTROPY ESTIMATE

The standard deviation of the maximum-likelihood es-
timate of K can be obtained from the variance of b,
var(b)=E(b*)—[E (b)]?, which reads for this geometric
distribution as

k
var(h)= —5— . (24)

(ek—1)?

The standard deviation in the estimate of the sample
average of b follows from

\/var

k 72
e ML

=V'var(b )/M:—:k——'" . (25)
VM(e M —1)

For large sample sizes M, the standard deviation of the
average of b will be small. In that case, we can use the
derivative of the function k =—In(1—1/b) in the point
k =kyy to estimate the standard deviation of k (or K),
because we can write for small values of the standard de-
viation of the average of b that

lkme tolkyp )= lhky —o (k)] olkyg)
(b+o(b)]—[b—o(b)] o(b)
ak |
Ob |k =ky, ;

(26)

as can be seen in Fig. 1. From the latter equation, the
standard deviation of k is obtained as

AML __ 1)2

ok
b

(e

ok )=0(B) | \=0(b) 27

kv e

k‘VlI

The combination of Egs. (25) and (27) gives the following
result for the standard deviation of K:

o~ ~
I ()
° [}
B +
e

4
kyy - o(ky,) - s k= - In(1-2)
kML
,
k Lt o(le) | Z, slope = ( (ab)" "ML
7/
k

FIG. 1. Approximation of the standard deviation of ky
from the sample average of b.
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KMLT:/Z_e “KMLT:/Z

oKy )=(r,VM )" Y(e ) (28)

=(7,V'M )" "2 sinh(K py; 7, /2)
=[r,VMVbb—-1]". (29)

Consequently, the relative standard deviation s(K,; ) of
the estimate of the entropy is obtained from

o (Kyy)

~(1,V MKy )™ 2 sinh(K ygp 7, /2)
KML

s(Kyp)=

=[r, VMK VEG—-1]"". (30

This means that s(Ky ) is not only dependent on the
sample size M but also on the maximum-likelihood esti-
mate K, itself. However, one can show that for
sufficiently small values of kyy =K 7, (€., Ky <<1),
the relative standard error becomes nearly independent of
ki and thus can be approximated by

s(KML)zT/lﬁ : 31)
For example, at a sampling frequency of 200 Hz and an
entropy of 10 bits/sec, kyy will be 0.05. In that case, a
relative standard error of 1% or smaller is obtained with
a sample size of at least 10 000 values of b.

V. CONCLUDING REMARKS

A maximum-likelihood approach has been proposed
for the estimation of the Kolmogorov entropy [Egs. (20)
and (21)] and of the relative standard error of the entropy
estimate [Eq. (30)]. The possibility of calculating a (sta-
tistical) estimate of the standard error will be very useful,
especially for the determination of how many pairs of
points should be taken into account in the analysis to ob-
tain a required accuracy. For example, one could define

the requirement that s(Ky ) should always be at least
smaller than 0.1%, which means that the calculation of
K should be based on at least a sample size of the or-
der of 10° values of . The determination of Ky and its
standard error from a time series can be done rather
quickly when an efficient algorithm is used [9].

Obviously, the values of b obtained from the time series
can also be used to determine quantitatively the cumula-
tive distribution function C(b) of b. It is useful to com-
pare this function with the calculated exponential func-
tion obtained from the maximum-likelihood estimate of
K. This comparison will provide an indication of how
well the assumed exponential decrease of C(b) is de-
scribed by the experimental data.

The largest possible value of the entropy that may be
computed from a time series can be directly deduced
from Eq. (20): the largest value of Ky is obtained for
the smallest average value of b that is larger than 1. This
situation is encountered when (M —1) times a value of
b =1 is obtained and just 1 times a value of b =2. In that
case, the average value of b equals

[(M—1)X1+1X2] _ (M +1)

b= 32

b M Iv; (32)
The maximum entropy reads then as

Kyp max=fs In(M +1), (33)

which equals In(M + 1) per time step. From this, it is ob-
served that the maximum possible value of the entropy
increases when the sample size M is increased.

A last remark will be made about the units of entropy.
The Kolmogorov entropy is usually expressed in bits per
unit of time. For that reason, the base of the distribution
function C(b) should be 2 instead of e. When the base e
is used, as in this paper, the entropy is usually expressed
as nats per unit of time.
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